Adaptive Mesh Refinement for Characteristic Codes
نویسندگان
چکیده
The use of adaptive mesh refinement (AMR) techniques is crucial for accurate and efficient simulation of higher dimensional spacetimes. In this work we develop an adaptive algorithm tailored to the integration of finite difference discretizations of wave-like equations using characteristic coordinates. We demonstrate the algorithm by constructing a code implementing the Einstein-Klein-Gordon system of equations in spherical symmetry. We discuss how the algorithm can trivially be generalized to higher dimensional systems, and suggest a method that can be used to parallelize a characteristic code.
منابع مشابه
New adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملAdaptive Mesh Refinement for Characteristic Grids
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the bestknown past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual “diamon...
متن کاملA collection of 2D elliptic problems for testing adaptive grid refinement algorithms
Adaptive grid refinement is a critical component of the improvements that have recently been made in algorithms for the numerical solution of partial differential equations (PDEs). The development of new algorithms and computer codes for the solution of PDEs usually involves the use of proof-of-concept test problems. 2D elliptic problems are often used as the first test bed for new algorithms a...
متن کاملOctasection-based Refinement of Finite Element Approximations on Tetrahedral Meshes that Guarantees Shape Quality
Adaptive refinement of finite element approximations on tetrahedral meshes is generally considered to be a non-trivial task. (We wish to stress that this paper deals with mesh refinement as opposed to remeshing.) The splitting individual finite elements needs to be done with much care to prevent significant deterioration of the shape quality of the elements of the refined meshes. Considerable c...
متن کاملRam: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code
We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth order accuracy i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004